Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 8.565
Filtrar
1.
Sci Rep ; 14(1): 9532, 2024 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-38664507

RESUMEN

The Arabian Peninsula accounts for approximately 6% of the world's coral reefs. Some thrive in extreme environments of temperature and salinity. Using 51 Autonomous Reef Monitoring Structure (ARMS), a standardized non-destructive monitoring device, we investigated the spatial patterns of coral reef cryptobenthic diversity in four ecoregions around the Arabian Peninsula and analyzed how geographical and/or environmental drivers shape those patterns. The mitochondrial cytochrome c oxidase subunit I (COI) gene was used to identify Amplicon Sequence Variants and assign taxonomy of the cryptobenthic organisms collected from the sessile and mobile fractions of each ARMS. Cryptobenthic communities sampled from the two ecoregions in the Red Sea showed to be more diverse than those inhabiting the Arabian (Persian) Gulf and the Gulf of Oman. Geographic distance revealed a stronger relationship with beta diversity in the Mantel partial correlation than environmental distance. However, the two mobile fractions (106-500 µm and 500-2000 µm) also had a significant correlation between environmental distance and beta diversity. In our study, dispersal limitations explained the beta diversity patterns in the selected reefs, supporting the neutral theory of ecology. Still, increasing differences in environmental variables (environmental filtering) also had an effect on the distribution patterns of assemblages inhabiting reefs within short geographic distances. The influence of geographical distance in the cryptofauna assemblages makes these relevant, yet usually ignored, communities in reef functioning vulnerable to large scale coastal development and should be considered in ecosystem management of such projects.


Asunto(s)
Biodiversidad , Arrecifes de Coral , Complejo IV de Transporte de Electrones , Animales , Complejo IV de Transporte de Electrones/genética , Antozoos/genética , Antozoos/clasificación , Océano Índico
2.
Proc Natl Acad Sci U S A ; 121(16): e2303336121, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38588432

RESUMEN

Climate change projections for coral reefs are founded exclusively on sea surface temperatures (SST). While SST projections are relevant for the shallowest reefs, neglecting ocean stratification overlooks the striking differences in temperature experienced by deeper reefs for all or part of the year. Density stratification creates a buoyancy barrier partitioning the upper and lower parts of the water column. Here, we mechanistically downscale climate models and quantify patterns of thermal stratification above mesophotic corals (depth 30 to 50 m) of the Great Barrier Reef (GBR). Stratification insulates many offshore regions of the GBR from heatwaves at the surface. However, this protection is lost once global average temperatures exceed ~3 °C above preindustrial, after which mesophotic temperatures surpass a recognized threshold of 30 °C for coral mortality. Bottom temperatures on the GBR (30 to 50 m) from 2050 to 2060 are estimated to increase by ~0.5 to 1 °C under lower climate emissions (SSP1-1.9) and ~1.2 to 1.7 °C under higher climate emissions (SSP5-8.5). In short, mesophotic coral reefs are also threatened by climate change and research might prioritize the sensitivity of such corals to stress.


Asunto(s)
Antozoos , Cambio Climático , Animales , Arrecifes de Coral , Temperatura , Agua , Ecosistema
3.
Sci Data ; 11(1): 398, 2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38637551

RESUMEN

Reef cores are a powerful tool for investigating temporal changes in reef communities. Radiometric dating facilitates the determination of vertical accretion rates, which has allowed for examination of local-regional controlling factors, such as subsidence and sea level changes. Coral reefs must grow at sufficient rates to keep up with sea level rise, or risk 'drowning.' As sea level is expected to rise significantly in the next 100 years and beyond, it is important to understand whether reefs will be able to survive. Historical records of reef accretion rates extracted from cores provide valuable insights into extrinsic controlling factors of reef growth and are instrumental in helping predict if future reefs can accrete at rates needed to overcome predicted sea level changes. While extensive research exists at local and regional scales, limited attention has been given to identifying global patterns and drivers. To address this, we present "RADReef": A global dataset of dated Holocene reef cores. RADReef serves as a foundation for further research on past, present and future reef accretion.


Asunto(s)
Antozoos , Animales , Arrecifes de Coral
4.
Sci Rep ; 14(1): 9006, 2024 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-38637581

RESUMEN

Marine heatwaves are increasing in frequency and duration, threatening tropical reef ecosystems through intensified coral bleaching events. We examined a strikingly variable spatial pattern of bleaching in Moorea, French Polynesia following a heatwave that lasted from November 2018 to July 2019. In July 2019, four months after the onset of bleaching, we surveyed > 5000 individual colonies of the two dominant coral genera, Pocillopora and Acropora, at 10 m and 17 m water depths, at six forereef sites around the island where temperature was measured. We found severe bleaching increased with colony size for both coral genera, but Acropora bleached more severely than Pocillopora overall. Acropora bleached more at 10 m than 17 m, likely due to higher light availability at 10 m compared to 17 m, or greater daily temperature fluctuation at depth. Bleaching in Pocillopora corals did not differ with depth but instead varied with the interaction of colony size and Accumulated Heat Stress (AHS), in that larger colonies (> 30 cm) were more sensitive to AHS than mid-size (10-29 cm) or small colonies (5-9 cm). Our findings provide insight into complex interactions among coral taxa, colony size, and water depth that produce high spatial variation in bleaching and related coral mortality.


Asunto(s)
Antozoos , Animales , Arrecifes de Coral , Ecosistema , Agua , Temperatura
5.
PeerJ ; 12: e17182, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38646482

RESUMEN

Background: Corallium japonicum, a prized resource in Japan, plays a vital role in traditional arts and fishing industries. Because of diminished stock due to overexploitation, ongoing efforts are focused on restoration through transplantation. This study aimed to enhance our understanding of the reproductive biology of these valuable corals and find more efficient methods for sex determination, which may significantly contribute to conservation initiatives. Methods: We used 12 three-month aquarium reared C. japonicum colony fragments, conducted histological analysis for maturity and sex verification, and performed transcriptome analysis via de novo assembly and mapping using the C. rubrum transcriptome to explore gene expression differences between female and male C. japonicum. Results: Our histological observations enabled sex identification in 33% of incompletely mature samples. However, the sex of the remaining 67% of samples, classified as immature, could not be identified. RNA-seq yielded approximately 21-31 million short reads from 12 samples. De novo assembly yielded 404,439 highly expressed transcripts. Among them, 855 showed significant differential expression, with 786 differentially expressed transcripts between females and males. Heatmap analysis highlighted 283 female-specific and 525 male-specific upregulated transcripts. Transcriptome assembly mapped to C. rubrum yielded 28,092 contigs, leading to the identification of 190 highly differentially expressed genes, with 113 upregulated exclusively in females and 70 upregulated exclusively in males. Blastp analysis provided putative protein annotations for 83 female and 72 male transcripts. Annotation analysis revealed that female biological processes were related to oocyte proliferation and reproduction, whereas those in males were associated with cell adhesion. Discussion: Transcriptome analysis revealed sex-specific gene upregulation in incompletely mature C. japonicum and shared transcripts with C. rubrum, providing insight into its gene expression patterns. This study highlights the importance of using both de novo and reference-based assembly methods. Functional enrichment analysis showed that females exhibited enrichment in cell proliferation and reproduction pathways, while males exhibited enrichment in cell adhesion pathways. To the best of our knowledge, this is the first report on the gene expressions of each sex during the spawning season. Our findings offer valuable insights into the physiological ecology of incompletely mature red Japanese precious corals and suggest a method for identifying sex using various genes expressed in female and male individuals. In the future, techniques such as transplantation, artificial fertilization, and larval rearing may involve sex determination methods based on differences in gene expression to help conserve precious coral resources and ecosystems.


Asunto(s)
Antozoos , Gametogénesis , Transcriptoma , Animales , Antozoos/genética , Antozoos/metabolismo , Femenino , Gametogénesis/genética , Masculino , Japón , Perfilación de la Expresión Génica/métodos , Pueblos del Este de Asia
6.
Mar Drugs ; 22(4)2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38667762

RESUMEN

Four undescribed sesquiterpenoids, lemneolemnanes A-D (1-4), have been isolated from the marine soft coral Lemnalia sp. The absolute configurations of the stereogenic carbons of 1-4 were determined by single-crystal X-ray crystallographic analysis. Compounds 1 and 2 are epimers at C-3 and have an unusual skeleton with a formyl group on C-6. Compound 3 possesses an uncommonly rearranged carbon skeleton, while 4 has a 6/5/5 tricyclic system. Compound 1 showed significant anti-Alzheimer's disease (AD) activity in a humanized Caenorhabditis elegans AD pathological model.


Asunto(s)
Antozoos , Caenorhabditis elegans , Sesquiterpenos , Animales , Antozoos/química , Sesquiterpenos/farmacología , Sesquiterpenos/química , Sesquiterpenos/aislamiento & purificación , Caenorhabditis elegans/efectos de los fármacos , Cristalografía por Rayos X , Enfermedad de Alzheimer/tratamiento farmacológico , Modelos Animales de Enfermedad , Humanos , Estructura Molecular
7.
Mar Drugs ; 22(4)2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38667774

RESUMEN

Five new biflorane-type diterpenoids, biofloranates E-I (1-5), and two new bicyclic diterpene glycosides, lemnaboursides H-I (6-7), along with the known lemnabourside, were isolated from the South China Sea soft coral Lemnalia bournei. Their chemical structures and stereochemistry were determined based on extensive spectroscopic methods, including time-dependent density functional theory (TDDFT) ECD calculations, as well as a comparison of them with the reported values. The antibacterial activities of the isolated compounds were evaluated against five pathogenic bacteria, and all of these diterpenes and diterpene glycosides showed antibacterial activities against Staphylococcus aureus and Bacillus subtilis, with MICs ranging from 4 to 64 µg/mL. In addition, these compounds did not exhibit noticeable cytotoxicities on A549, Hela, and HepG2 cancer cell lines, at 20 µM.


Asunto(s)
Antozoos , Antibacterianos , Bacillus subtilis , Diterpenos , Glicósidos , Pruebas de Sensibilidad Microbiana , Staphylococcus aureus , Antozoos/química , Diterpenos/farmacología , Diterpenos/química , Diterpenos/aislamiento & purificación , Antibacterianos/farmacología , Antibacterianos/química , Antibacterianos/aislamiento & purificación , Animales , Glicósidos/farmacología , Glicósidos/química , Glicósidos/aislamiento & purificación , Humanos , Staphylococcus aureus/efectos de los fármacos , Bacillus subtilis/efectos de los fármacos , Células HeLa , Línea Celular Tumoral , Células Hep G2 , Estructura Molecular , Células A549 , China
8.
Mar Drugs ; 22(4)2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38667798

RESUMEN

Three pairs of enantiomers (1-3)-the new 12R-aloesol (1a) and two new fatty acids (2 and 3)-and one new natural product (4) together three known compounds (5-7) were isolated from a coral-reef-derived Streptomyces sp. SCSIO 66814. Their structures were determined through extensive spectroscopic analysis, chiral analysis, and single-crystal X-ray diffraction data. Compounds 2 and 3 were presumed to be intermediates for further generating homononactic acid (5) and nonactic acid, and the latter two molecules were able to act as precursors to form macrotetrolides with remarkable biological activity. The isolation of related precursors, compounds 2-5, provided more evidence to support the proposal of a plausible biosynthetic pathway for nonactic acid and its homologs. Additionally, (+)-1 exhibited a weak activity against DPPH radicals.


Asunto(s)
Antozoos , Cromonas , Streptomyces , Streptomyces/metabolismo , Streptomyces/química , Cromonas/química , Cromonas/aislamiento & purificación , Cromonas/farmacología , Estereoisomerismo , Antozoos/química , Animales , Cristalografía por Rayos X , Ácidos Grasos/química , Ácidos Grasos/aislamiento & purificación , Productos Biológicos/química , Productos Biológicos/farmacología , Productos Biológicos/aislamiento & purificación , Estructura Molecular
9.
Proc Natl Acad Sci U S A ; 121(17): e2307214121, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38621123

RESUMEN

Environmental DNA (eDNA) metabarcoding has the potential to revolutionize conservation planning by providing spatially and taxonomically comprehensive data on biodiversity and ecosystem conditions, but its utility to inform the design of protected areas remains untested. Here, we quantify whether and how identifying conservation priority areas within coral reef ecosystems differs when biodiversity information is collected via eDNA analyses or traditional visual census records. We focus on 147 coral reefs in Indonesia's hyper-diverse Wallacea region and show large discrepancies in the allocation and spatial design of conservation priority areas when coral reef species were surveyed with underwater visual techniques (fishes, corals, and algae) or eDNA metabarcoding (eukaryotes and metazoans). Specifically, incidental protection occurred for 55% of eDNA species when targets were set for species detected by visual surveys and 71% vice versa. This finding is supported by generally low overlap in detection between visual census and eDNA methods at species level, with more overlap at higher taxonomic ranks. Incomplete taxonomic reference databases for the highly diverse Wallacea reefs, and the complementary detection of species by the two methods, underscore the current need to combine different biodiversity data sources to maximize species representation in conservation planning.


Asunto(s)
Antozoos , ADN Ambiental , Animales , Arrecifes de Coral , Ecosistema , ADN Ambiental/genética , Biodiversidad , Antozoos/genética , Peces , Código de Barras del ADN Taxonómico
10.
PLoS Biol ; 22(4): e3002593, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38603520

RESUMEN

Understanding the evolution of coral endosymbiosis requires a predictive framework that integrates life-history theory and ecology with cell biology. The time has come to bridge disciplines and use a model systems approach to achieve this aim.


Asunto(s)
Antozoos , Animales , Antozoos/genética , Simbiosis , Ecología , Arrecifes de Coral , Evolución Biológica
11.
Ecol Lett ; 27(4): e14424, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38634183

RESUMEN

Species-to-species and species-to-environment interactions are key drivers of community dynamics. Disentangling these drivers in species-rich assemblages is challenging due to the high number of potentially interacting species (the 'curse of dimensionality'). We develop a process-based model that quantifies how intraspecific and interspecific interactions, and species' covarying responses to environmental fluctuations, jointly drive community dynamics. We fit the model to reef fish abundance time series from 41 reefs of Australia's Great Barrier Reef. We found that fluctuating relative abundances are driven by species' heterogenous responses to environmental fluctuations, whereas interspecific interactions are negligible. Species differences in long-term average abundances are driven by interspecific variation in the magnitudes of both conspecific density-dependence and density-independent growth rates. This study introduces a novel approach to overcoming the curse of dimensionality, which reveals highly individualistic dynamics in coral reef fish communities that imply a high level of niche structure.


Asunto(s)
Antozoos , Arrecifes de Coral , Animales , Peces/fisiología , Especificidad de la Especie , Factores de Tiempo , Antozoos/fisiología , Biodiversidad
12.
Mar Environ Res ; 197: 106479, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38583357

RESUMEN

Tropical seascapes rely on the feedback relationships among mangrove forests, seagrass meadows, and coral reefs, as they mutually facilitate and enhance each other's functionality. Biogeochemical fluxes link tropical coastal habitats by exchanging material flows and energy through various natural processes that determine the conditions for life and ecosystem functioning. However, little is known about the seascape-scale implications of anthropogenic disruptions to these linkages. Despite the limited number of integrated empirical studies available (with only 11 out of 81 selected studies focusing on the integrated dynamics of mangroves, seagrass, and corals), this review emphasizes the importance of biogeochemical fluxes for ecosystem connectivity in tropical seascapes. It identifies four primary anthropogenic influences that can disturb these fluxes-nutrient enrichment, chemical pollution, microbial pollution, and solid waste accumulation-resulting in eutrophication, increased disease incidence, toxicity, and disruptions to water carbonate chemistry. This review also highlights significant knowledge gaps in our understanding of biogeochemical fluxes and ecosystem responses to perturbations in tropical seascapes. Addressing these knowledge gaps is crucial for developing practical strategies to conserve and manage connected seascapes effectively. Integrated research is needed to shed light on the complex interactions and feedback mechanisms within these ecosystems, providing valuable insights for conservation and management practices.


Asunto(s)
Antozoos , Ecosistema , Animales , Humanos , Arrecifes de Coral , Humedales , Eutrofización
13.
Artículo en Inglés | MEDLINE | ID: mdl-38568201

RESUMEN

A Gram-stain-negative, motile, aerobic, non-spore-forming coccus, designated strain CR14T, was isolated from crustose coralline algae. Cells grew at 20-30 °C (optimum, 25 °C), at pH 6-9 (optimum, pH 7.6) and with NaCl concentrations of 0.5-9 % (w/v; optimum, 2-4 %). Global alignment based on 16S rRNA gene sequences indicated strain CR14T is closest to Ruficoccus amylovorans JCM 31066T with an identity of 92 %. The average nucleotide identity and average amino acid identity values between CR14T and R. amylovorans JCM 31066T were 68.4 and 59.9 %, respectively. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain CR14T forms an independent branch within the family Cerasicoccaeae, which was consistent with the phylogenomic results. The sole isoprenoid quinone was MK-7. The major fatty acids were C14 : 0, C18 : 1 ω9c, C19 : 0 cyc 9,10 DMA, C16 : 0, and C18 : 2 ω6c. The major cellular polar lipids were phosphatidylethanolamine, phosphatidylglycerol, diphosphatidylglycerol, and two unidentified lipids. The genome DNA G+C content was 48.7 mol%. Based on morphological, physiological and chemotaxonomic characteristics, strain CR14T is suggested to represent a novel species in a new genus, for which the name Rubellicoccus peritrichatus gen. nov., sp. nov. is proposed. The type strain is CR14T (=MCCC 1K03845T=KCTC 72139T).


Asunto(s)
Antozoos , Ácidos Grasos , Animales , Composición de Base , Ácidos Grasos/química , Filogenia , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , ADN Bacteriano/genética , Técnicas de Tipificación Bacteriana
14.
Sci Rep ; 14(1): 7785, 2024 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-38565615

RESUMEN

The golden coral Savalia savaglia is a long-living ecosystem engineer of Mediterranean circalittoral assemblages, able to induce necrosis of gorgonians' and black corals' coenenchyme and grow on their cleaned organic skeleton. Despite its rarity, in Boka Kotorska Bay (Montenegro) a shallow population of more than 1000 colonies was recorded close to underwater freshwater springs, which create very peculiar environmental conditions. In this context, the species was extremely abundant at two sites, while gorgonians were rare. The abundance and size of S. savaglia colonies and the diversity of the entire benthic assemblage were investigated by photographic sampling in a depth range of 0-35 m. Several living fragments of S. savaglia spread on the sea floor and small settled colonies (< 5 cm high) suggested a high incidence of asexual reproduction and a non-parasitic behaviour of this population. This was confirmed by studying thin sections of the basal portion of the trunk where the central core, generally represented by the remains of the gorgonian host skeleton, was lacking. The S. savaglia population of Boka Kotorska Bay forms the unique Mediterranean assemblage of the species deserving the definition of animal forest. Recently, temporary mitigation measures for anthropogenic impact were issued by the Government of Montenegro. Nevertheless, due to the importance of the sites the establishment of a permanent Marine Protected Area is strongly recommended.


Asunto(s)
Antozoos , Ecosistema , Animales , Montenegro , Bahías , Mar Mediterráneo
15.
Glob Chang Biol ; 30(4): e17257, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38572701

RESUMEN

Countries are expanding marine protected area (MPA) networks to mitigate fisheries declines and support marine biodiversity. However, MPA impact evaluations typically assess total fish biomass. Here, we examine how fish biomass disaggregated by adult and juvenile life stages responds to environmental drivers, including sea surface temperature (SST) anomalies and human footprint, and multiple management types at 139 reef sites in the Mesoamerican Reef (MAR) region. We found that total fish biomass generally appears stable across the region from 2006 to 2018, with limited rebuilding of fish stocks in MPAs. However, the metric of total fish biomass masked changes in fish community structure, with lower adult than juvenile fish biomass at northern sites, and adult:juvenile ratios closer to 1:1 at southern sites. These shifts were associated with different responses of juvenile and adult fish to environmental drivers and management. Juvenile fish biomass increased at sites with high larval connectivity and coral cover, whereas adult fish biomass decreased at sites with greater human footprint and SST anomalies. Adult fish biomass decreased primarily in Honduran general use zones, which suggests insufficient protection for adult fish in the southern MAR. There was a north-south gradient in management and environmental drivers, with lower coverage of fully protected areas and higher SST anomalies and coastal development in the south that together may undermine the maintenance of adult fish biomass in the southern MAR. Accounting for the interplay between environmental drivers and management in the design of MPAs is critical for increasing fish biomass across life history stages.


Los países están ampliando las redes de áreas marinas protegidas (AMP) para mitigar la disminución de las pesquerías y apoyar la biodiversidad marina. Sin embargo, las evaluaciones de impacto de las AMP típicamente estudian la biomasa total de peces. Aquí, examinamos cómo la biomasa de peces desagregada por etapas de vida adultas y juveniles responde a factores ambientales como anomalías de la temperatura superficial del mar (SST) e impacto humano, y múltiples tipos de manejo en 139 sitios de arrecifes en el sistema arrecifal mesoamericano (SAM). Encontramos que la biomasa total de peces en general parece estable en toda la región entre 2006 y 2018, con una recuperación limitada de las poblaciones de peces en las AMP. Sin embargo, la métrica de biomasa total de peces enmascaró los cambios en la estructura de la comunidad de peces, con una biomasa de peces adultos más baja que juveniles en los sitios del norte, y proporciones adulto:juvenil más cercana a 1:1 en los sitios del sur. Estos cambios fueron asociados con diferentes respuestas de peces juveniles y adultos a variables ambientales y de manejo. La biomasa de peces juveniles aumentó en sitios con alta conectividad larvaria y cobertura coralina, mientras que la biomasa de peces adultos disminuyó en sitios con mayor impacto humano y anomalías en la SST. La biomasa de peces adultos disminuyó principalmente en las zonas de uso general (GUZ) hondureñas, lo cual sugiere una protección insuficiente para peces adultos en el sur del SAM. Hubo un gradiente norte­sur en el manejo y los factores ambientales, con menor cobertura de áreas totalmente protegidas y mayores anomalías de SST y desarrollo costero en el sur. En conjunto esto puede degradar el mantenimiento de la biomasa de peces adultos en el sur del SAM. La interacción entre factores ambientales y el manejo en el diseño de las AMP es fundamental para aumentar la biomasa de peces en todas las etapas del ciclo de vida.


Asunto(s)
Antozoos , Ecosistema , Animales , Humanos , Arrecifes de Coral , Conservación de los Recursos Naturales , Biomasa , Peces/fisiología , Explotaciones Pesqueras
16.
Sci Rep ; 14(1): 7859, 2024 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-38570591

RESUMEN

Local adaptation can increase fitness under stable environmental conditions. However, in rapidly changing environments, compensatory mechanisms enabled through plasticity may better promote fitness. Climate change is causing devastating impacts on coral reefs globally and understanding the potential for adaptive and plastic responses is critical for reef management. We conducted a four-year, three-way reciprocal transplant of the Caribbean coral Siderastrea siderea across forereef, backreef, and nearshore populations in Belize to investigate the potential for environmental specialization versus plasticity in this species. Corals maintained high survival within forereef and backreef environments, but transplantation to nearshore environments resulted in high mortality, suggesting that nearshore environments present strong environmental selection. Only forereef-sourced corals demonstrated evidence of environmental specialization, exhibiting the highest growth in the forereef. Gene expression profiling 3.5 years post-transplantation revealed that transplanted coral hosts exhibited profiles more similar to other corals in the same reef environment, regardless of their source location, suggesting that transcriptome plasticity facilitates acclimatization to environmental change in S. siderea. In contrast, algal symbiont (Cladocopium goreaui) gene expression showcased functional variation between source locations that was maintained post-transplantation. Our findings suggest limited acclimatory capacity of some S. siderea populations under strong environmental selection and highlight the potential limits of coral physiological plasticity in reef restoration.


Asunto(s)
Antozoos , Animales , Antozoos/fisiología , Arrecifes de Coral , Región del Caribe , Transcriptoma , Aclimatación/genética
17.
Nat Commun ; 15(1): 2902, 2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38575584

RESUMEN

Microbial diversity has been extensively explored in reef-building corals. However, the functional roles of coral-associated microorganisms remain poorly elucidated. Here, we recover 191 bacterial and 10 archaeal metagenome-assembled genomes (MAGs) from the coral Acropora kenti (formerly A. tenuis) and adjacent seawater, to identify microbial functions and metabolic interactions within the holobiont. We show that 82 MAGs were specific to the A. kenti holobiont, including members of the Pseudomonadota, Bacteroidota, and Desulfobacterota. A. kenti-specific MAGs displayed significant differences in their genomic features and functional potential relative to seawater-specific MAGs, with a higher prevalence of genes involved in host immune system evasion, nitrogen and carbon fixation, and synthesis of five essential B-vitamins. We find a diversity of A. kenti-specific MAGs encode the biosynthesis of essential amino acids, such as tryptophan, histidine, and lysine, which cannot be de novo synthesised by the host or Symbiodiniaceae. Across a water quality gradient spanning 2° of latitude, A. kenti microbial community composition is correlated to increased temperature and dissolved inorganic nitrogen, with corresponding enrichment in molecular chaperones, nitrate reductases, and a heat-shock protein. We reveal mechanisms of A. kenti-microbiome-symbiosis on the Great Barrier Reef, highlighting the interactions underpinning the health of this keystone holobiont.


Asunto(s)
Antozoos , Microbiota , Resiliencia Psicológica , Animales , Antozoos/genética , Antozoos/microbiología , Microbiota/genética , Metagenoma/genética , Nitrógeno , Arrecifes de Coral , Simbiosis/genética
18.
Commun Biol ; 7(1): 410, 2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38575730

RESUMEN

Climate change is restructuring natural ecosystems. The direct impacts of these events on biodiversity and community structure are widely documented, but the impacts on the genetic variation of populations remains largely unknown. We monitored populations of Acropora coral on a remote coral reef system in northwest Australia for two decades and through multiple cycles of impact and recovery. We combined these demographic data with a temporal genetic dataset of a common broadcast spawning corymbose Acropora to explore the spatial and temporal patterns of connectivity underlying recovery. Our data show that broad-scale dispersal and post-recruitment survival drive recovery from recurrent disturbances, including mass bleaching and mortality. Consequently, genetic diversity and associated patterns of connectivity are maintained through time in the broader metapopulation. The results highlight an inherent resilience in these globally threatened species of coral and showcase their ability to cope with multiple disturbances, given enough time to recover is permitted.


Asunto(s)
Antozoos , Resiliencia Psicológica , Animales , Antozoos/genética , Ecosistema , Arrecifes de Coral , Dinámica Poblacional
19.
PLoS One ; 19(4): e0298073, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38656948

RESUMEN

Resilience-based management is essential to protect ecosystems in the Anthropocene. Unlike large-scale climate threats to Great Barrier Reef (GBR) corals, outbreaks of coral-eating crown-of-thorns starfish (COTS; Acanthaster cf. solaris) can be directly managed through targeted culling. Here, we evaluate the outcomes of a decade of strategic COTS management in suppressing outbreaks and protecting corals during the 4th COTS outbreak wave at reef and regional scales (sectors). We compare COTS density and coral cover dynamics during the 3rd and 4th outbreak waves. During the 4th outbreak wave, sectors that received limited to no culling had sustained COTS outbreaks causing significant coral losses. In contrast, in sectors that received timely and sufficient cull effort, coral cover increased substantially, and outbreaks were suppressed with COTS densities up to six-fold lower than in the 3rd outbreak wave. In the Townsville sector for example, despite exposure to comparable disturbance regimes during the 4th outbreak wave, effective outbreak suppression coincided with relative increases in sector-wide coral cover (44%), versus significant coral cover declines (37%) during the 3rd outbreak wave. Importantly, these estimated increases span entire sectors, not just reefs with active COTS control. Outbreaking reefs with higher levels of culling had net increases in coral cover, while the rate of coral loss was more than halved on reefs with lower levels of cull effort. Our results also indicate that outbreak wave progression to adjoining sectors has been delayed, probably via suppression of COTS larval supply. Our findings provide compelling evidence that proactive, targeted, and sustained COTS management can effectively suppress COTS outbreaks and deliver coral growth and recovery benefits at reef and sector-wide scales. The clear coral protection outcomes demonstrate the value of targeted manual culling as both a scalable intervention to mitigate COTS outbreaks, and a potent resilience-based management tool to "buy time" for coral reefs, protecting reef ecosystem functions and biodiversity as the climate changes.


Asunto(s)
Antozoos , Conservación de los Recursos Naturales , Arrecifes de Coral , Estrellas de Mar , Animales , Estrellas de Mar/fisiología , Antozoos/fisiología , Conservación de los Recursos Naturales/métodos , Ecosistema , Australia/epidemiología
20.
J Exp Biol ; 227(8)2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38563292

RESUMEN

Concentrations of dissolved nitrogen in seawater can affect the resilience of the cnidarian-dinoflagellate symbiosis to climate change-induced bleaching. However, it is not yet known how the assimilation and translocation of the various nitrogen forms change during heat stress, nor how the symbiosis responds to nutrient depletion, which may occur due to increasing water stratification. Here, the tropical scleractinian coral Stylophora pistillata, in symbiosis with dinoflagellates of the genus Symbiodinium, was grown at different temperatures (26°C, 30°C and 34°C), before being placed in nutrient-replete or -depleted seawater for 24 h. The corals were then incubated with 13C-labelled sodium bicarbonate and different 15N-labelled nitrogen forms (ammonium, urea and dissolved free amino acids) to determine their assimilation rates. We found that nutrient depletion inhibited the assimilation of all nitrogen sources studied and that heat stress reduced the assimilation of ammonium and dissolved free amino acids. However, the host assimilated over 3-fold more urea at 30°C relative to 26°C. Overall, both moderate heat stress (30°C) and nutrient depletion individually decreased the total nitrogen assimilated by the symbiont by 66%, and combined, they decreased assimilation by 79%. This led to the symbiotic algae becoming nitrogen starved, with the C:N ratio increasing by over 3-fold at 34°C, potentially exacerbating the impacts of coral bleaching.


Asunto(s)
Antozoos , Dinoflagelados , Respuesta al Choque Térmico , Simbiosis , Antozoos/fisiología , Antozoos/metabolismo , Animales , Dinoflagelados/fisiología , Dinoflagelados/metabolismo , Respuesta al Choque Térmico/fisiología , Nutrientes/metabolismo , Nitrógeno/metabolismo , Compuestos de Nitrógeno/metabolismo , Agua de Mar/química , Calor , Aminoácidos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...